
����������������������������
�������������
����

https://www.elcomsoft.com

Hashcat is a great, free tool competing head to head
with the tools we make. We charge several hundred
dollars for what, in the end, can be done with a free
tool. What are the reasons for our customers to
choose ElcomSoft products instead of Hashcat, and
is the expense justified? We did our best to compare
the two tools to help you make the informed
decision.

Both Hashcat and Elcomsoft Distributed Password
Recovery are tools for breaking passwords.

Both tools can perform hardware-accelerated brute-
force attacks using conventional video cards, and
both tools can do dictionary and smart attacks.

Both tools can use distributed networks to speed up
the attacks, yet Hashcat needs a third-party tool for
that.

Both are thoroughly optimized to offer the highest
performance on hundreds of file formats. On paper,
the two tools have so many similarities they may
look alike. The usage experience in typical use cases,
however, could not be more different.

We did our best to compare the two tools to
help you make the informed decision.

https://www.elcomsoft.com

SYSTEM REQUIREMENTS

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery is a Windows only
product. You need Windows 7, 8, 8.1 or Windows 10 to run both the
server and each of the clients. If you are using distributed attacks,
each of the computers comprising the distributed network must
run Windows.

In addition to Windows, you need proper drivers. Elcomsoft
Distributed Password Recovery is comfortable with officially
released versions of NVIDIA drivers; we’ve seen no nasty surprises
with either Studio or Gaming drivers as long as they come with
CUDA. AMD drivers are a bit sketchier, so we have to test major
releases for compatibility. If you’re using a different GPU, the
correct OpenCL driver must be installed in order for the hardware
acceleration to work.

Hashcat
Hashcat is a cross-platform tool supporting all major versions of
Windows, macOS, and many Linux distributions. However, you’ll
be hard-pressed to find one single platform on which all of the
Hashcat features work. From time to time, you’ll need Hashcat to
use several host operating systems to perform its duties. As an
example, you’ll need a Mac to extract encryption metadata from
FileVault disks.

In addition to the host OS, you’ll also need the following to utilize
some or all Hashcat features.

• git (optional but recommended)
• Perl
• Python
• C/C++ compiler, correctly configured and equipped with the

required libraries. Some hash extraction utilities are available
exclusively in source code with no precompiled binaries.

https://www.elcomsoft.com

HARDWARE ACCELERATION

SUPPORTED FORMATS

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery offers GPU acceleration
on NVIDIA video cards, while some formats can utilize AMD
hardware. Our tool can also utilize OpenCL, the open standard
for parallel programming of heterogeneous systems. Thanks
to OpenCL support, Distributed Password Recovery can utilize
the GPU units found in many Intel processors, which can deliver
several times the typical performance of CPU cores. Should GPU
acceleration be unavailable on a given system or for a given format,
the tool transparently falls back to CPU-only implementation.

Hashcat
Hashcat is decidedly GPU only. The tool requires an AMD or NVIDIA
video card to work, and you’ll need a compatible version of the
graphic driver. Where Hashcat requires the use of the OpenCL
runtime to interface with compatible CPUs (which we struggled to
enable), Distributed Password Recovery addresses the CPU cores
directly, utilizes the native CUDA for interfacing with NVIDIA boards,
and uses OpenCL for everything else.

Both tools advertise hardware acceleration to speed up brute-force attacks. The devil is in the detail.

Even the best password recovery tool is worth nothing if it does not
support that one encrypted data format you urgently need to break.
On paper, Hashcat supports a larger number of formats compared
to our tool. While both Hashcat and Elcomsoft Distributed Password
Recovery advertise hundreds of supported formats and generally
tick all the basics, our tool covers a few things that Hashcat does not.
These include:
• Office 97/2003 (key search)
• PDF with 40 bit encryption (key search)
• Apple iWork (Pages, Numbers, Keynote)

• Hangul/Hancom Office (HanWord, HanCell)
• PGP ZIP archives (.PGP) (password

recovery)

• PGP secret key rings (.SKR)
(passphrase recovery) (GPU
accelerated)

• PGP disks with conventional
encryption (.PGD) (password
recovery) (GPU accelerated)

• PGP self-decrypting archives (.EXE)
(password recovery)

• PGP whole disk encryption (password
recovery) (GPU accelerated)

• Intuit Quicken

• macOS keychain password (GPU
accelerated)

• BlackBerry backups (.IPD, .BBB)
(password recovery) (GPU
accelerated)

• FileMaker
• Apple Disk Image (.DMG) passwords
• DashLane password manager
• Tally ERP 9 Vault passwords

SETTING UP AND INITIAL CONFIGURATION

Elcomsoft Distributed Password Recovery
The greater differences are experienced when setting up and
configuring the tools for the first time. When installed on a single
computer, Elcomsoft Distributed Password Recovery is essentially
a plug-and-play endeavor: you download the installation file,
double-click to install, then launch the product from the Windows
Start menu. That’s pretty much it; the tool automatically launches
the required components (the client, server, and interactive
management console) and detects the available acceleration
resources. By the time you see the main window, the tool is ready
to run your first attack.

Hashcat
Hashcat offers a typical Linux experience even if you are using it in
Windows. All goes well if you already have the compatible GPU with
compatible drivers. Should something go wrong, and you may need
to spend extra time troubleshooting. This, for example, is what we’ve
seen when trying to benchmark Hashcat on an Intel CPU in a Windows
VM:

Apparently, an OpenCL runtime is required to run attacks on Intel
CPUs. Obtaining OpenCL runtime for Intel Core was borderline
amazing. The runtime is only available to developers with Intel
developer accounts. Registering the account and waiting for its
approval took a day; however, we were still unable to run Hashcat on
that computer even with the OpenCL runtime installed.

To its credit, Hashcat would run normally in Windows once we
installed a compatible NVIDIA board. We could also launch Hashcat in
Linux using the same video card. This time the quest was less puzzling;
all that we needed to do was using the particular version of Ubuntu,
carefully uninstalling the pre-installed NVIDIA drivers (a wrong move
bricks the system), adding the recommended drivers repository and
installing the recommended driver from that repository. Piece of cake
if you use NVIDIA. We failed the quest when we tried using an AMD
card though.

To sum it up, you need a supported
OpenCL device to use Hashcat. NVIDIA
boards are supported; you’ll need some
luck for AMD or Intel. If you use Ubuntu,
you’ll require an NVIDIA board. Elcomsoft
Distributed Password Recovery, on the

other hand, just… works.

WORKFLOW: LAUNCHING THE ATTACK

Hashcat
Hashcat only attacks hashes; hence the name. You cannot just
point Hashcat to a ZIP file or a Word document. Instead, you must
first run a separate third-party script to extract the hash from
the file you’re about to attack. These scripts are not delivered
with Hashcat, so you’ll have to look for them and obtain them
separately. As an example, when attacking a Microsoft Office
document, you must first process the original document with
office2hashcat.py.

As you can see, the script is a Python script, which means you’ll
have to install Python with a number of modules. On some
systems, the pip module installer is not always installed with
Python, so you’ll have to obtain and install that (note that the
workflow is different for the different host operating systems).

Once you install Python, run the script and extract the hash, you’ll
receive the hash string, e.g.

office$*2010*100000*128*16*a1688e8975694550a7a61b5

While “office$*2010” suggests that the hash belongs to a document
saved in a certain Microsoft Office format, Hashcat won’t take it
for granted. When running the attack, you’ll have to additionally
specify the “-m 9500” parameter in the command line, which
identifies the hash as an Office 2010 file. Why “9500”? Because
RTFM.

Dealing exclusively with hashes has its pros and contras. The
obvious drawback is the added complexity. If you have more than
a single document (or maybe several thousand files in various
formats), setting up the attack can take considerable time. Unless

Elcomsoft Distributed Password Recovery
What about Elcomsoft Distributed Password Recovery? When
originally released, we aimed for simplicity, allowing to simply
open a file to launch the attack, end of story. Distributed
Password Recovery is smart enough to analyze the file’s content,
automatically detecting the correct file format even if the file was
renamed or has no extension.

Since May 2020, we are optionally offering tighter control over
personal information with attacks on encryption metadata. If you
prefer, you can use the straightforward classic workflow, but you are
no longer limited to that. You can also run the included Elcomsoft
Hash Extractor tool to extract encryption metadata (a.k.a. hashes)
from certain file formats such as password manager databases
or the various office documents. For encrypted disks, you’d use
Elcomsoft Forensic Disk Decryptor instead, which is also included.

We have already noted that Hashcat is a command-line tool, while Elcomsoft Distributed Password Recovery is based on the GUI. You’d naturally
expect some differences in the workflow, but there’s more to that than meets the eye. The two tools are very different from the get-go.

you name the files with hash data properly, you may get lost in
which hash belongs to which file.

There is a positive side to hash-only recovery. You can keep the
original files and their hashes on different computers or even in
different networks. You can extract hashes in one lab and run
the attack in another, or even send the hashes to a specialized
password recovery service without the risk of leaking any personal
or confidential information.

https://blog.elcomsoft.com/2020/05/tighter-control-over-personal-information-with-attacks-on-encryption-metadata/
https://blog.elcomsoft.com/2020/05/tighter-control-over-personal-information-with-attacks-on-encryption-metadata/

DISTRIBUTED COMPUTING

Hashcat
Enabling distributed computing with Hashcat requires installing a
server module. The server is designed as a cross-platform module,
yet the documentation is completely Linux-centric. In order to
install the server module, you will have to ensure that all of the
following components are installed and configured:

• MySQL
• Apache
• PHP
• Perl
• Python

After installing these packages (either individually or as the lamp-
server package), you can install hashtopolis. You must have a
clear understanding of Linux administration to install and run
hashtopolis. The server can be controlled via the Web interface.

You will also need an agent installed on each computer that will
become parts of the distributed network. The agent is a ZIP file
that contains an app written in Python. The distribution kit is
assembled dynamically for each agent; the server’s IP address will
be hard coded.

In order to run each agent, you’ll need the Python environment. As a
result, agents are running in the user space. If you were using Windows
(which is already unlikely at this point), you’ll have a problem if you
want agents running as system services (i.e. without an authenticated
user session). Needless to say, you must also install Hashcat on each

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery installs the server
automatically. No configuration is required, but you can do some
fine-tuning. Agents can be manually installed or deployed silently
over the network through the Windows domain. Once installed,
the agents are immediately ready to work with zero configuration
required.

Just as the name suggests, Elcomsoft Distributed Password Recovery is designed to work on distributed networks from the get-go. Hashcat supports
hashtopolis (previously known as hashtopussy), which is a separate project that works as a wrapper to enable distributed computing.

computer that runs agents, and you have to make sure there are no
unresolved issues with the drivers, OpenCL runtimes etc.

To sum it up, Hashcat can work in distributed networks, but rolling out
the system is a pain. We found it’s easier to write our own tool instead.

Just as the name suggests,
Elcomsoft Distributed Password Recovery

is designed to work on distributed
networks from the get-go.

CLOUD COMPUTING

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery supports two major
cloud providers offering Windows virtual machines: Amazon and
Microsoft Azure. We supply a ready-made, prepackaged image that
can be deployed into Amazon cloud in several clicks. The agent
running in the newly created instance is automatically provided
with the server’s IP address.

Installing EDPR agents into Microsoft Azure is also automated. The
supplied script will automatically install the latest version of the agent
to any number of existing (grouped) instances. The only input required
is your Microsoft Azure authentication credentials (the login and
password). The installation process is completely transparent.

Hashcat
Cloud computing in Hashcat is available through a separate,
third-party wrapper called hashtopolis. If you managed to set
up and configure hashtopolis on a local computer, you can
probably do it in the cloud as well. There are no tools to simplify
cloud deployment, so depending on your skills and experience
configuring Hashcat to work with cloud instances may take longer
than you had originally expected.

Depending on your skills and experience
configuring Hashcat to work with cloud
instances may take longer than you had

originally expected.

https://www.elcomsoft.com

THE ATTACKS

Brute force and mask attacks Brute force and mask attacks

Dictionary attack

Dictionary attack

When recovering a tough password, almost everything depends on the quality of the wordlist and the type and configuration of the attack.
Let us see how the two tools compare.

Plain brute force attacks almost never succeed on anything but the
simplest passwords, yet they still might be effective against shorter
passwords and uncomplicated protection.

Elcomsoft Distributed Password Recovery supports a similar
concept, but allows specifying the minimum and maximum
password length as well as the character set either globally (for the
whole password) or in groups or characters, allowing to quickly
build an attack that takes into consideration the human factor.
Brute-force and masks attacks are configured in the GUI.

Elcomsoft Distributed Password Recovery provides automatic
dictionary distribution to all connected agents including those
working in the virtual instances. Dictionary attacks support a
large number of pre-defined mutations, allowing to try the most
common combinations of dictionary words such as Password,
password1, Pa$$w0rd, password1965 and a lot more. We
recommend our users trying a small dictionary with certain
mutations first, as this often finds frequently used passwords.
We also include the dictionary of the top 10,000 most popular
passwords from several major leaks, which may help breaking up
to 30% of cases in English-speaking countries.

In Hashcat and hashtopolis, you specify the attack through the
command line or list the attacks in a text file. In Hashcat, brute
force attacks are a subset of the mask attack. As an example, if you
want to try all passwords that consist of small Latin letters and are
1 to 5 characters long, you can specify the following attack:

?l
?l?l
?l?l?l
?l?l?l?l
?l?l?l?l?l

If you are using hashtopolis, you’ll need to enter these five strings
into the corresponding text field.

The two tools implement dictionary attacks differently. Hashcat
accepts the dictionary as a wordlist, trying each entry the way it is
stored in the dictionary. There are no pre-defined mutations and
no ability to add a mask when running a dictionary attack (these
are parts of the rule-based attack). No automatic distribution of the
dictionary file is available if you are running hashtopolis; agents will
only use the dictionaries that are already installed.

Elcomsoft Distributed Password Recovery Hashcat

Hybrid attack

Combinator attack

Rule-based attack

While both tools support hybrid attacks, the term is used in
different meanings.

Hashcat-style hybrid attacks combine one dictionary word (from
a single dictionary) with one mask. This would be considered a
particular case of a mask attack in Elcomsoft Distributed Password
Recovery. In our tool, one can use multiple dictionaries, where
any part of the mask can be a dictionary word. We believe that our
solution has an edge over Hashcat here.

What Elcomsoft Distributed Password Recovery calls a “hybrid
attack” is classified as a “rule-based attack” in Hashcat.

Otherwise, the implementations are very similar; we would even call
them identical, as booth tools are following the same syntax as John
The Ripper, the tool that originated this attack.

This is a simple combination of two dictionary words from two dictionaries (same or different files). Both Hashcat and
Elcomsoft Distributed Password Recovery support this attack.

Attacks: conclusion
Booth tools support a wide range of attacks. Dare we say, setting up attacks in Elcomsoft Distributed Password Recovery is
simpler and more straightforward compared to Hashcat. Everything is configured from the graphical user interface. A live preview
of sample passwords is displayed for every mask or mutation enabled.

To its credit, Hashcat has the ability to run a set of several consecutive attacks, a feature that Elcomsoft Distributed
Password Recovery lacks. One can, however, create multiple individual attacks on the password, and run them in the
regular job queue.

https://www.elcomsoft.com

BENCHMARKS

THE COSTS

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery is as much plug-and-play
as a forensic grade distributed computing tool can be. Installing the
tool on a single computer is no different from installing any other
Windows program, while deploying agents to network computers
is similar to deploying any other package in your Windows domain.
Prepackaged agents make cloud instances straightforward to
set up and to use. The attacks are as fast or slightly faster than
Hashcat, while being significantly easier to set up.

That level of user-friendliness and simplicity comes at a cost. We
charge $599 for a license covering the parallel use of 5 agents. If you
are expanding into the cloud, you will notice the differences in cost
between Linux and Windows-powered VMs.

The cost of hardware should be the same for both products. The
more and the faster video cards you install, the faster the attacks.

Hashcat
Hashcat is free. Hashcat, hashtopolis, most hash extraction
scripts and the host OS (Linux) are absolutely free to use,
modify, recompile, or make a custom version just for you, on one
condition: you do it yourself or you pay someone to do it for you.
Using Hashcat requires skills and experience. Setting up Hashcat
on a single computer requires deeper skills, more experience
and quite some time. Preparing the tool to run on a distributed
network requires skills and experience in Linux administration, a
lot of time and a bit of trial and error. Writing attack scripts takes
time, and even adding an agent to hashtopolis when you expand
your distributed network takes time. It takes time processing
disk images of encrypted disk, and it takes time to obtain hash
extraction scripts for the occasional new file format.

If you read to this point, you must be interested which tool is faster. While
we could make and post numerous benchmarks, the truth is that both tools
are highly optimized, and both can exploit the available hardware resources
to the maximum. Trying over a hundred formats, we’ve seen performance
fluctuations of around 10 per cent. For many formats, Elcomsoft Distributed

Password Recovery offers a (very) slight edge over Hashcat thanks to the
additional utilization of available CPU cores (Hashcat, as you remember,
is GPU-only). Whichever tool you choose, you’ll be happy with its raw
performance – or, at least, it doesn’t get much better if you jump ship.

If you are an open-source fan, you’re going to like this chapter; less so of you are a (paid) customer.

TECHNICAL SUPPORT

THE EXTRA FEATURES

Password cache Running as a service

Distributed updates
Non-ASCII characters and Unicode support

There are a few features that can greatly improve usability of Elcomsoft Distributed Password Recovery over Hashcat.

If we find a password to one job, we add that password into a custom
dictionary. Once the next job is started, we’ll try passwords from that
dictionary first. This helps save time if the same password is reused
across multiple files or data formats.

Elcomsoft Distributed Password Recovery agents do not require
an authenticated user session to work. Agents can run as a system
service, starting along with the system.

Hashcat can do the same in Linux. However, the Windows version
requires an authenticated session to run hashtopolis Python scripts.

When you update Elcomsoft Distributed Password Recovery, all
components of the distributed network are updated automatically
including all connected agents.

Hashtopolis makes updates a journey. While Hashcat and hashtopolis
can be updated automatically, updating the agents requires an effort.
You’ll have to manually stop each agent, obtain the updated version
from the server, and manually install it on each computer.

Hashcat supports non-ASCII and Unicode characters, but adding
those to the attack requires a concise effort. If you want to add certain
non-ASCII characters, you’ll have to use the --hex-charset option and
add the extra characters as HEX codes. If you want to use a dictionary
with non-ASCII words, you’ll have to do the same.

Elcomsoft Distributed Password Recovery is Unicode throughout.

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery is supported by us via
the standard ticket system. We stand behind our product, quickly
resolving the issues once they are reported.

Hashcat
If you have a problem, Hashcat has a wide community of users and an
active forum where you can search for or post questions about issues.
What you may not like is the answers. While we had no problem finding
the answers to our issues (e.g. attacking a large ZIP archive), finding that
what you want is simply not an option can be a little… discouraging.

CASE STUDY 1: BREAKING AN OFFICE 97/2003 DOCUMENT CASE STUDY 2: BREAKING ZIP PASSWORD

So you have successfully installed Hashcat, git and Python. Assuming that the
Python installer had the required modules, you’re good to go and ready to
launch an attack.

In the first case study, we’ll try to break a document in the Office 97/2003
format (the “.doc” extension; the file might have been saved in “Compatibility
mode” by a newer version of Microsoft Office). The file is protected with a 40-
bit RC4 key.

Hashcat
After processing the document with office2hashcat.py, we’ve got the hash.
Hashcat started the attack on the password; considering the (high) speed of
the attack, we estimated the attack to complete in about 1 to 1.5 years.

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery correctly recognized the file format
and offered an option to brute-force the 40-bit encryption keys. The estimated
recovery time was 48 hours using a CPU alone. Note that the same document
can be recovered in a matter of minutes if you use the Thunder Tables attack in
Advanced Office Password Breaker.

The second case study deals with a ZIP archive protected with AES-256
encryption.

Hashcat
Hashcat requires the use of a third-party tool to extract hashes from the
target. This time around, you’ll need zip2john, which is a part of the John the
Ripper package.

When attacking ZIP encryption, a single small hash file is not enough. The
last step of the attack calculates hash sum of the entire encrypted file. The
resulting hash file extracted with zip2john is about 2MB. However, we could
not make Hashcat to open the file. The tool had crashed with the following
error:

Counted lines in c:\hashcat-6.1.1\z2.hash... Oversized line detected! Truncated
402236 bytes

We tried finding a solution (here and here), but the only kind of solution we
found was this:

hashcat supports a data length of about 8 KB (compressed of course) for -m
13600 = Winzip

Unfortunately, for -m 13600 you need the whole data_buf (encrypted and
compressed data) to verify if the password is correct.

(github)

We’ve been unable to launch the attack on the ZIP file with Hashcat.

Elcomsoft Distributed Password Recovery
Elcomsoft Distributed Password Recovery was able to open that ZIP archive
and run the attack in a matter of seconds.

https://www.elcomsoft.com/aopb.html
https://hashcat.net/forum/thread-8770.html
https://security.stackexchange.com/questions/225002/unable-to-start-hashcat-in-mode-13600-winzip-separator-unmatched
https://github.com/hashcat/hashcat/issues/2186#issuecomment-530489997
https://www.elcomsoft.com

CASE STUDY 3: BREAKING VERACRYPT

In the third case study, we’ll try breaking the password to a VeraCrypt
container.

Hashcat
On paper, Hashcat had been offering support for VeraCrypt containers long
before we did it in Elcomsoft Distributed Password Recovery, so we expect a
well-ironed solution. We didn’t have much trouble running the attack on the
hash file extracted from the VeraCrypt container. In this regard, Hashcat is a
fast and mature solution for breaking encrypted containers. What we did have
a problem with was producing the required hash file to launch the attack.

If you are attacking an encrypted container (the file), all you need are the first 512
bytes of the file. In the case of full-disk encryption, you will also need to extract
the 512 bytes; however, the extraction process is somewhat more complicated.
The Hashcat Wiki has the following explanation:

1. for a TrueCrypt boot volume (i.e. the computer starts with the TrueCrypt Boot
Loader) you need to extract 512 bytes starting with offset 31744 (62 * 512
bytes). This is true for TrueCrypt 7.0 or later. For TrueCrypt versions before 7.0
there might be different offsets.
Explanation for this is that the volume header (which stores the hash info) is
located at the last sector of the first track of the system drive. Since a track is
usually 63 sectors long (1 sector is 512 bytes), the volume header is at sector
63 - 1 (62).

2. if TrueCrypt uses a hidden partition, you need to skip the first 64K bytes
(65536) and extract the next 512 bytes.
dd if=hashcat_ripemd160_AES_hidden.raw of=hashcat_ripemd160_AES_
hidden.tc bs=1 skip=65536 count=512

3. in all other cases (files, non-booting partitions) you need the first 512 Bytes of
the file or partition.

The same procedure should also work for VeraCrypt volumes (but you
need to adapt the hash mode to -m 137XY - see the --help output for all the
supported hash modes for VeraCrypt and the correct values for X and Y).

Additional troubles arise when you try to extract hashes from VeraCrypt
volumes stored inside a forensic disk image. If this is the case, you may have
to mount the disk image, calculate the address of the last sector of the first
track on the disk, then extract the required binary data. We understand the
theory but decided to skip this exercise due to lack of motivation.

Elcomsoft Distributed Password Recovery
It is exactly this kind of exercise we wanted to skip when developing
Elcomsoft Distributed Password Recovery. In order to extract encryption
metadata from one or several encrypted disks, you will need to open the
physical device or forensic disk image in the included Elcomsoft Forensic Disk
Decryptor (or boot the computer with Elcomsoft System Recovery). Simply
ticking the required disk(s) in the GUI will do the trick.

https://blog.elcomsoft.com/2020/03/breaking-veracrypt-containers/
https://hashcat.net/wiki/doku.php?id=frequently_asked_questions#how_do_i_extract_the_hashes_from_truecrypt_volumes
https://www.elcomsoft.com

As we already said in the beginning, Hashcat is a great tool and
a strong competitor. Many of the differences are in the areas of
usability and things actually working, let alone working out of the
box. Where Elcomsoft Distributed Password Recovery just works
the way you expect it to, you may have to spend a bit of time
to make Hashcat work. These bits of time quickly accumulate,
turning into multiple man-hours spent on setting up and
configuring the distributed network, updating agents, distributing
dictionaries across remote agents, finding and using hash
extraction tools and overcoming the various obstacles, some of
which we have described in this article.

CONCLUSION

www.elcomsoft.com
blog.elcomsoft.com
sales@elcomsoft.com

https://t.me/elcomsoft
https://www.facebook.com/ElcomSoft
https://twitter.com/elcomsoft
https://www.youtube.com/c/ElcomSoftCompany?sub_confirmation=1
https://www.instagram.com/elcomsoft/
https://www.reddit.com/user/Elcomsoft/
https://www.elcomsoft.com
https://www.elcomsoft.com
https://blog.elcomsoft.com

